These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: RANK ligand and interferon gamma differentially regulate cathepsin gene expression in pre-osteoclastic cells.
    Author: Pang M, Martinez AF, Jacobs J, Balkan W, Troen BR.
    Journal: Biochem Biophys Res Commun; 2005 Mar 18; 328(3):756-63. PubMed ID: 15694411.
    Abstract:
    Receptor activator of NF-kappaB ligand (RANKL) and interferon gamma (IFN-gamma) are critical and opposing mediators of osteoclastogenesis, exerting stimulatory and inhibitory effects, respectively. Cathepsin K (CTSK) is a secreted protease that plays an essential role in osteoclastic bone resorption. We have examined the role of IFN-gamma in the regulation of CTSK expression in the murine monocytic RAW 264.7 cell line, which can be readily differentiated to bone-resorbing osteoclasts upon RANKL treatment. Real-time RT-PCR reveals that RANKL stimulates CTSK mRNA expression in a dose- and time-dependent fashion, but that RANKL does not alter the expression of cathepsin L (CTSL) and cathepsin S (CTSS) mRNA. IFN-gamma stimulates both CTSL and CTSS expression after 3 days, but fails to significantly alter CTSK expression. IFN-gamma markedly inhibits the stimulation of CTSK mRNA and protein by RANKL, whereas RANKL suppresses the stimulation of CTSL and CTSS mRNA by IFN-gamma. IFN-gamma also ablates the RANKL induced osteoclastic differentiation of RAW cells. In RAW cells stably transfected with a CTSK promoter-luciferase plasmid containing the 1618 bp upstream of the transcription initiation site, IFN-gamma inhibits CTSK promoter activity and ablates its induction by RANKL. In conclusion, IFN-gamma and RANKL differentially regulate cathepsin K, S, and L gene expression in pre-osteoclastic cells, and there appears to be significant cross talk between the signal transduction pathways mediating the responses to RANKL and IFN-gamma.
    [Abstract] [Full Text] [Related] [New Search]