These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Different effects of long- and short-chain ceramides on the gel-fluid and lamellar-hexagonal transitions of phospholipids: a calorimetric, NMR, and x-ray diffraction study.
    Author: Sot J, Aranda FJ, Collado MI, Goñi FM, Alonso A.
    Journal: Biophys J; 2005 May; 88(5):3368-80. PubMed ID: 15695626.
    Abstract:
    The effects on dielaidoylphosphatidylethanolamine (DEPE) bilayers of ceramides containing different N-acyl chains have been studied by differential scanning calorimetry small angle x-ray diffraction and (31)P-NMR spectroscopy. N-palmitoyl (Cer16), N-hexanoyl (Cer6), and N-acetyl (Cer2) sphingosines have been used. Both the gel-fluid and the lamellar-inverted hexagonal transitions of DEPE have been examined in the presence of the various ceramides in the 0-25 mol % concentration range. Pure hydrated ceramides exhibit cooperative endothermic order-disorder transitions at 93 degrees C (Cer16), 60 degrees C (Cer6), and 54 degrees C (Cer2). In DEPE bilayers, Cer16 does not mix with the phospholipid in the gel phase, giving rise to high-melting ceramide-rich domains. Cer16 favors the lamellar-hexagonal transition of DEPE, decreasing the transition temperature. Cer2, on the other hand, is soluble in the gel phase of DEPE, decreasing the gel-fluid and increasing the lamellar-hexagonal transition temperatures, thus effectively stabilizing the lamellar fluid phase. In addition, Cer2 was peculiar in that no equilibrium could be reached for the Cer2-DEPE mixture above 60 degrees C, the lamellar-hexagonal transition shifting with time to temperatures beyond the instrumental range. The properties of Cer6 are intermediate between those of the other two, this ceramide decreasing both the gel-fluid and lamellar-hexagonal transition temperatures. Temperature-composition diagrams have been constructed for the mixtures of DEPE with each of the three ceramides. The different behavior of the long- and short-chain ceramides can be rationalized in terms of their different molecular geometries, Cer16 favoring negative curvature in the monolayers, thus inverted phases, and the opposite being true of the micelle-forming Cer2. These differences may be at the origin of the different physiological effects that are sometimes observed for the long- and short-chain ceramides.
    [Abstract] [Full Text] [Related] [New Search]