These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Exposure to organochlorine compounds and effects on ovarian function. Author: Windham GC, Lee D, Mitchell P, Anderson M, Petreas M, Lasley B. Journal: Epidemiology; 2005 Mar; 16(2):182-90. PubMed ID: 15703532. Abstract: BACKGROUND: Some chemicals appear to have hormonally active properties in animals, but data in humans are sparse. Therefore, we examined ovarian function in relation to organochlorine compound levels. METHODS: During 1997-1999, 50 Southeast Asian immigrant women of reproductive age collected urine samples daily. These samples were assayed for metabolites of estrogen and progesterone, and the women's menstrual cycle parameters were assessed. Organochlorine compounds (including DDT, its metabolite DDE, and 10 polychlorinated biphenyl [PCB] congeners) were measured in serum. RESULTS: All samples had detectable DDT and DDE, with mean levels higher than typical U.S. populations. Mean cycle length was approximately 4 days shorter at the highest quartile concentration of DDT or DDE compared with the lowest. After adjustment for lipid levels, age, parity, and tubal ligation, and exclusion of a particularly long cycle, the decrements were attenuated to less than 1 day, with wide confidence intervals (CIs). The adjusted mean luteal phase length was shorter by approximately 1.5 days at the highest quartile of DDT (95% CI = -2.6 to -0.30) or DDE (-2.6 to -0.20). With each doubling of the DDE level, cycle length decreased 1.1 day (-2.4 to 0.23) and luteal phase length decreased 0.6 days (-1.1 to -0.2). Progesterone metabolite levels during the luteal phase were consistently decreased with higher DDE concentration. PCB levels were not generally associated with cycle length or hormone parameters after adjustment, and they did not alter the DDE associations when included in the same models. CONCLUSIONS: This study indicates a potential effect of DDE on ovarian function, which may influence other end points such as fertility, pregnancy, and reproductive cancers.[Abstract] [Full Text] [Related] [New Search]