These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Alcohol produces dose-dependent antiatherogenic and atherogenic plasma lipoprotein responses.
    Author: Hojnacki JL, Cluette-Brown JE, Deschenes RN, Mulligan JJ, Osmolski TV, Rencricca NJ, Barboriak JJ.
    Journal: Proc Soc Exp Biol Med; 1992 May; 200(1):67-77. PubMed ID: 1570359.
    Abstract:
    A comprehensive assessment of lipoprotein compositional/metabolic response to incremental caloric ethanol (EtOH) doses ranging from low to moderate to high was undertaken using male squirrel monkeys. Control monkeys were maintained on a chemically defined, isocaloric liquid diet, while experimental primates wee fed increasing doses of alcohol (6, 12, 18, 24, 30, and 36% of energy) substituted isocalorically for carbohydrate at 3-month intervals. Liver function tests and plasma triglyceride were normal for all animals. Plasma cholesterol showed a transient increase at the 12% caloric dose that was attributed solely to an increase in high density lipoprotein (HDL). A more pronounced increase in plasma sterol, beginning at 24% and continuing to 36% EtOH, was the result of increments in both HDL and low density lipoprotein (LDL) cholesterol, although the contribution by the latter was substantial primarily at the 36% dose. Plasma apolipoprotein elevations (HDL apolipoprotein A-I, LDL apolipoprotein B) generally accompanied the lipoprotein lipid increases, although the first atherogenic response for LDL became manifest as a significant increase in apolipoprotein B at 18% EtOH calories. Postheparin plasma lipoprotein lipase was not affected by dietary alcohol, whereas hepatic triglyceride lipase activity showed significant increases at higher (24 and 36%) EtOH doses. Plasma lecithin-cholesterol acyltransferase activity was normal at the 6 and 12% EtOH doses, but exhibited a significant reduction beginning at 18% and continuing to 36% EtOH. Alterations in these key lipoprotein regulatory enzymes may represent the underlying metabolic basis for the observed changes in lipoprotein levels and our earlier findings of HDL2/HDL3 subfraction modifications. Results from our study indicate that in squirrel monkeys, moderate (12%) EtOH caloric intake favors an antiatherogenic lipoprotein profile (increases HDL, normal LDL levels, and lecithin-cholesterol acyltransferase activity), whereas higher doses (24-36%) produce both coronary-protective (increases HDL) and atherogenic (increases LDL) responses. Moreover, the 18% EtOH level represents an important transition dose which signals early adverse alterations in lipoprotein composition (increases apolipoprotein B) and metabolism (decreases lecithin-cholesterol acyltransferase).
    [Abstract] [Full Text] [Related] [New Search]