These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The effects of 17beta-estradiol and ethanol on zinc- or manganese-induced toxicity in SK-N-SH cells.
    Author: Keller J, Owens CT, Lai JC, Devaud LL.
    Journal: Neurochem Int; 2005 Mar; 46(4):293-303. PubMed ID: 15707694.
    Abstract:
    Serious neurodegenerative disorders are increasingly prevalent in our society and excessive oxidative stress may be a key mediator of neuronal cell death in many of these conditions. A variety of metals, such as manganese and zinc, are essential trace elements but can reach localized toxic concentrations through various disease processes or environmental exposures and have been implicated as having a role in neurodegeneration. Both manganese and zinc exist as bivalent cations and are essential cofactors/activators for numerous enzymes. Evidence suggests one action of these metals, when concentrated beyond physiological levels, may be to inhibit cellular energy production, ultimately leading to increased radical formation. Our studies were undertaken to directly investigate the toxic effects of manganese and zinc in an immortalized neuronal-like cell line (SK-N-SH) by testing interactions with the antioxidant, 17beta-estradiol, and the neurotoxin, ethanol. Employing undifferentiated SK-N-SH cells, we found that these metals caused biphasic effects, enhancing cell proliferation at low doses and inducing cell death at higher doses. Zinc was both more efficacious and more potent than manganese in enhancing growth and in causing cell death. 17beta-Estradiol and ethanol enhanced the proliferative actions of zinc and manganese across a wide concentration range. Furthermore, co-treatment with either 17beta-estradiol or ethanol afforded protection against manganese-, but not zinc-induced toxicity. Finally, combined administration of 17beta-estradiol and ethanol to SK-N-SH cells resulted in both a loss of growth enhancement and protective properties that were observed when these substances were administered individually. We also noted that the toxic effects occurred more rapidly from zinc than manganese exposure. Taken together, these data suggest that oxidative stress likely has a role in cell death resulting from toxic exposure to either zinc or manganese, but there is a difference in the precise mechanism of their effects.
    [Abstract] [Full Text] [Related] [New Search]