These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Novel model of calcium and inositol 1,4,5-trisphosphate regulation of InsP3 receptor channel gating in native endoplasmic reticulum.
    Author: Foskett JK, Mak DO.
    Journal: Biol Res; 2004; 37(4):513-9. PubMed ID: 15709677.
    Abstract:
    The InsP3R Ca(2+)-release channel has biphasic dependence on cytoplasmic free Ca2+ concentration ([Ca2+]i). InsP3 activates gating primarily by reducing high [Ca2+]i inhibition. To determine whether relieving Ca2+ inhibition is sufficient for activation, we examined single-channels in low [Ca2+]i in the absence of InsP3 by patch clamping isolated Xenopus oocyte nuclei. For both endogenous Xenopus type 1 and recombinant rat type 3 InsP3R channels, spontaneous InsP3-independent activities with low open probability Po (approximately 0.03) were observed in [Ca2+]i < 5 nM, whereas none were observed in 25 nM Ca2+. These results establish the half-maximal inhibitory [Ca2+]i in the absence of InsP3 and demonstrate that the channel can be active when all of its ligand-binding sites are unoccupied. In the simplest allosteric model that fits all observations in nuclear patch-clamp studies, the tetrameric channel can adopt six conformations, the equilibria among which are controlled by two inhibitory, one activating Ca(2+)-binding, and one InsP3-binding sites in a manner similar to the Monod-Wyman-Changeux model. InsP3 binding activates gating by affecting the relative affinity for Ca2+ of one of the inhibitory sites in different channel conformations, transforming it into an activating site. Ca2+ inhibition of InsP3-liganded channels is mediated by an InsP3-independent second inhibitory site.
    [Abstract] [Full Text] [Related] [New Search]