These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Repression of PXR-mediated induction of hepatic CYP3A gene expression by protein kinase C.
    Author: Ding X, Staudinger JL.
    Journal: Biochem Pharmacol; 2005 Mar 01; 69(5):867-73. PubMed ID: 15710363.
    Abstract:
    Pregnane X receptor (PXR, NR1I2) regulates the inducible expression of the 3A sub-family of cytochrome P450 genes (CYP3A). CYP3A enzymes are responsible for the oxidative metabolism of a wide array of endobiotic and xenobiotic compounds. Hepatic CYP3A gene expression is rapidly down-regulated during inflammation and sepsis. There are twelve protein kinase C (PKC) isoforms, classified into three subfamilies according to the structure of the N-terminal regulatory domain and their sensitivity to calcium and diacylglycerol. It is now well accepted that cytokine stimulation of hepatocytes increases intracellular PKC activity during inflammation and sepsis. We show here that protein kinase C alpha (PKC alpha) and phorbol ester-dependent PKC signaling dramatically repressed PXR activity in both, cell-based reporter gene assays and in hepatocytes. Moreover, treatment with the protein phosphatase PP1/PP2A inhibitor okadaic acid (OA) totally abolished PXR activity in reporter gene assays and in cultured hepatocytes. In mammalian two-hybrid assays, treatment with phorbol 12-myristate 13-acetate (PMA) increased the strength of interaction between PXR and the nuclear receptor co-repressor protein (NCoR). Treatment with PMA also abolished the ligand-dependent interaction between PXR and the steroid receptor co-activator 1 protein (SRC1). Our findings suggest that activation of the protein kinase C signaling pathway represses PXR activity through alterations in PXR-protein co-factor complexes, possibly through direct alterations in the phosphorylation status of one or all of these proteins. In addition, our data potentially provide important insights into the molecular mechanism of the repression of hepatic CYP3A gene expression that occurs during the inflammatory response.
    [Abstract] [Full Text] [Related] [New Search]