These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The delayed initiation and slow elongation of fuzz-like short fibre cells in relation to altered patterns of sucrose synthase expression and plasmodesmata gating in a lintless mutant of cotton. Author: Ruan YL, Llewellyn DJ, Furbank RT, Chourey PS. Journal: J Exp Bot; 2005 Mar; 56(413):977-84. PubMed ID: 15710635. Abstract: Cotton (Gossypium hirsutum L.) seed develops single-celled long fibres (lint) from the seed-coat epidermis at anthesis. Previous studies have shown that the initiation and rapid elongation of these fibres requires the expression of sucrose synthase (Sus) and, potentially, a transient closure of plasmodesmata. This study extends the previous work to examine the patterns of Sus expression and plasmodesmata gating in fuzz-like short fibres of a mutant that shows delayed initiation and much slower and reduced elongation of the fibre cells. Immunolocalization studies revealed delayed expression of Sus in the mutant seed-coat epidermis that correlates temporally and spatially with the initiation of the fibre cells. Anatomically, these short fibres differed from the normal lint in that their basal ends enlarged immediately after initiation, while the majority of the normal lint on wild-type seed did not show this enlargement until the end of elongation. Suppression of Sus expression in the seed-coat epidermis of the transgenic plants reduced the length of both lint and short fuzz fibres at maturity, suggesting that the growth of short fibres also requires high levels of Sus expression. Confocal imaging of the membrane-impermeant fluorescent solute carboxyfluorescein (CF) revealed no closure of plasmodesmata during the entire elongation period of short fibres from the mutant seed. These results show (i) the delayed initiation of fuzz-like short fibres from the mutant seed correlates with delayed or insufficient expression of Sus in a subset of seed-coat epidermal cells destined to become fibres and (ii) the much shortened elongation of the fibres from the mutant may be related to their inability to close plasmodesmata.[Abstract] [Full Text] [Related] [New Search]