These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Afferents of vocalization-controlling periaqueductal regions in the squirrel monkey. Author: Dujardin E, Jürgens U. Journal: Brain Res; 2005 Feb 09; 1034(1-2):114-31. PubMed ID: 15713263. Abstract: In order to determine the input of vocalization-controlling regions of the midbrain periaqueductal gray (PAG), wheat germ agglutinin-horseradish peroxidase was injected in six squirrel monkeys (Saimiri sciureus) at PAG sites yielding vocalization when injected with the glutamate agonist homocysteic acid. Brains were scanned for retrogradely labeled areas common to all six animals. The results show that the vocalization-eliciting sites receive a widespread input, with the heaviest projections coming from the surrounding PAG, dorsomedial and ventromedial hypothalamus, medial preoptic region, substantia nigra pars diffusa, zona incerta and reticular formation of the mesencephalon, pons, and medulla. The heaviest cortical input reaches the PAG from the mediofrontal cortex. Moderate to weak projections come from the insula, lateral prefrontal, and premotor cortex as well as the superior and middle temporal cortex. Subcortical moderate to weak projections reach the PAG from the central and medial amygdala, nucleus of the stria terminalis, septum, nucleus accumbens, lateral preoptic region, lateral and posterior hypothalamus, globus pallidus, pretectal area, deep layers of the superior colliculus, the pericentral inferior colliculus, mesencephalic trigeminal nucleus, locus coeruleus, substantia nigra pars compacta, dorsal and ventral raphe, vestibular nuclei, spinal trigeminal nucleus, solitary tract nucleus, and nucleus gracilis. The input of the periaqueductal vocalization-eliciting regions thus is dominated by limbic, motivation-controlling afferents; input, however, also comes from sensory, motor, arousal-controlling, and cognitive brain areas.[Abstract] [Full Text] [Related] [New Search]