These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Recapitulation of germ cell- and pituitary-specific expression with 1.6 kb of the cystatin-related epididymal spermatogenic (Cres) gene promoter in transgenic mice.
    Author: Hsia N, Brousal JP, Hann SR, Cornwall GA.
    Journal: J Androl; 2005; 26(2):249-57. PubMed ID: 15713831.
    Abstract:
    The Cres (cystatin-related epididymal spermatogenic) gene encodes the defining member of a new subgroup within the family 2 cystatins of cysteine protease inhibitors. Cres expression is highly tissue- and cell-specific, with messenger RNA (mRNA) present in the testicular round/elongating spermatids, proximal caput epididymal epithelium, gonadotroph cells in the anterior pituitary gland, and corpus luteum of the ovary. To begin to elucidate the molecular mechanisms controlling the tissue- and cell-specific expression of the Cres gene, transgenic mice were generated containing 1.6 kilobases (kb) of the mouse Cres promoter linked to the bacterial chloramphenicol acetyltransferase (CAT) reporter gene. A CAT enzyme-linked immunosorbent assay detected CAT protein in the testis, epididymis, isolated cauda epididymal spermatozoa, and anterior pituitary gland from mice heterozygous and homozygous for the transgene. However, reverse transcription (RT)-PCR did not detect CAT mRNA in any regions of the epididymis, suggesting that the CAT protein detected in the epididymis was from spermatozoa. RT-PCR also did not detect CAT mRNA in the ovary. RT-PCR analysis of the testes from mice of different postnatal ages showed CAT mRNA first detected at day 22, which correlated with the first appearance of Cres mRNA and with the presence of round spermatids. These studies demonstrate that 1.6 kb of Cres promoter contains the DNA elements necessary for germ cell and pituitary gland-specific expression but lacks critical sequences necessary for expression in the epididymis and ovary.
    [Abstract] [Full Text] [Related] [New Search]