These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Linking axonal degeneration to microtubule remodeling by Spastin-mediated microtubule severing. Author: Evans KJ, Gomes ER, Reisenweber SM, Gundersen GG, Lauring BP. Journal: J Cell Biol; 2005 Feb 14; 168(4):599-606. PubMed ID: 15716377. Abstract: Mutations in the AAA adenosine triphosphatase (ATPase) Spastin (SPG4) cause an autosomal dominant form of hereditary spastic paraplegia, which is a retrograde axonopathy primarily characterized pathologically by the degeneration of long spinal neurons in the corticospinal tracts and the dorsal columns. Using recombinant Spastin, we find that six mutant forms of Spastin, including three disease-associated forms, are severely impaired in ATPase activity. In contrast to a mutation designed to prevent adenosine triphosphate (ATP) binding, an ATP hydrolysis-deficient Spastin mutant predicted to remain kinetically trapped on target proteins decorates microtubules in transfected cells. Analysis of disease-associated missense mutations shows that some more closely resemble the canonical hydrolysis mutant, whereas others resemble the ATP-binding mutant. Using real-time imaging, we show that Spastin severs microtubules when added to permeabilized, cytosol-depleted cells stably expressing GFP-tubulin. Using purified components, we also show that Spastin interacts directly with microtubules and is sufficient for severing. These studies suggest that defects in microtubule severing are a cause of axonal degeneration in human disease.[Abstract] [Full Text] [Related] [New Search]