These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Stent-based nitric oxide delivery reducing neointimal proliferation in a porcine carotid overstretch injury model. Author: Hou D, Narciso H, Kamdar K, Zhang P, Barclay B, March KL. Journal: Cardiovasc Intervent Radiol; 2005; 28(1):60-5. PubMed ID: 15719180. Abstract: BACKGROUND: The effects of nitric acid (NO) on vessel response to injury include the inhibition of platelet adhesion, platelet aggregation, leukocyte adhesion and smooth muscle cell proliferation. Releasing NO from a stent might reduce the clinical problem of restenosis. The present study was designed to examine whether an NO-eluting covered stent can prevent neointimal formation in a porcine carotid overstretch injury model. METHODS: The interior of a self-expanding polytetrafluoroethylene (ePTFE)-covered aSpire stent was coated with silicone, which contained 23.6 microg or 54.5 microg sodium nitroprusside (SNP, NO-releasing compound). The stent was implanted into carotid artery. Six pigs were implanted with stents, one high-dose SNP and one uncoated control, following balloon overstretch injury of the carotid artery with a balloon-to-artery ratio of 1.3:1. RESULTS: No local or systemic toxicity was evidenced in the six pigs after carotid artery implantation with either low- or high-dose stents within a week. At day 28, the mean intimal thickness was 0.12 +/- 0.05 mm for NO-eluting stents and 0.43 +/- 0.09 mm for uncoated stents (p = 0.008). The mean neointimal area was reduced from 2.40 +/- 0.39 mm2 for control stents to 0.49 +/- 0.16 mm2 for NO-eluting stents (p < 0.0001), which resulted in a 24% reduction of angiographic vessel narrowing. CONCLUSIONS: The NO-eluting ePTFE-covered stent is feasible and effectively reduces in-stent neointimal hyperplasia at 28 days in a porcine carotid overstretch model.[Abstract] [Full Text] [Related] [New Search]