These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Yohimbine disrupts prepulse inhibition in rats via action at 5-HT1A receptors, not alpha2-adrenoceptors.
    Author: Powell SB, Palomo J, Carasso BS, Bakshi VP, Geyer MA.
    Journal: Psychopharmacology (Berl); 2005 Jul; 180(3):491-500. PubMed ID: 15719216.
    Abstract:
    RATIONALE: Prepulse inhibition (PPI) of the acoustic startle response is an operational measure of sensorimotor gating that can be assessed in both humans and animals. The noradrenergic system appears to play a role in PPI as the alpha1 agonist cirazoline disrupts PPI and the alpha1 antagonist prazosin blocks the disruptions in PPI produced by phencyclidine. OBJECTIVES: To better understand the role of adrenergic receptors in the modulation of PPI, we assessed the effects of the alpha2 adrenergic antagonist yohimbine (2.5, 5.0, and 7.5 mg/kg) on PPI. RESULTS: Yohimbine reduced PPI at the 5.0 and 7.5 mg/kg doses, without significantly affecting startle magnitude. In separate experiments, we examined whether adrenergic or serotonergic compounds blocked this disruption in PPI produced by yohimbine. There was a trend for the alpha2 agonist clonidine (0.01, 0.02 mg/kg) to attenuate the PPI disruption produced by yohimbine. However, other alpha2 agonists (guanfacine, medetomidine) and an alpha1 antagonist (prazosin) failed to prevent the disruption. The alpha2 antagonist atipamezole weakly decreased PPI in a narrow dose range (0.3-1.0 mg/kg). The 5-HT1A antagonist WAY100,635 (0.1, 0.3 mg/kg) significantly prevented the yohimbine-induced disruption of PPI. CONCLUSIONS: These findings indicate that (1) yohimbine disrupts PPI in rats and (2) the yohimbine-induced disruption of PPI is largely due to the 5-HT1A partial agonist properties of yohimbine.
    [Abstract] [Full Text] [Related] [New Search]