These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Competing roles of cytochrome P450 1A1/1B1 and aldo-keto reductase 1A1 in the metabolic activation of (+/-)-7,8-dihydroxy-7,8-dihydro-benzo[a]pyrene in human bronchoalveolar cell extracts. Author: Jiang H, Shen YM, Quinn AM, Penning TM. Journal: Chem Res Toxicol; 2005 Feb; 18(2):365-74. PubMed ID: 15720144. Abstract: (+/-)-7,8-Dihydroxy-7,8-dihydrobenzo[a]pyrene (BP-7,8-diol), a proximate carcinogen derived from benzo[a]pyrene (BP) requires further metabolic activation to exert its carcinogenic effects. Two principal pathways have been implicated, and these involve either the formation of (+/-)-trans-7,8-dihydroxy-9alpha,10alpha-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (anti-BPDE) catalyzed by P450 1A1/P450 1B1 (NADPH-dependent monoxygenases) or the formation of benzo[a]pyrene-7,8-dione (BP-7,8-dione) catalyzed by human aldo-keto reductases AKR1A1 and AKR1C1-AKR1C4 [NAD(P)(H)-dependent oxidoreductases]. The relative contributions of the two pathways to PAH activation are unknown. In this study, BP-7,8-diol metabolism was studied in human bronchoalveolar H358 cell extracts. Parental H358 cells do not constitutively express P450 1A1/P450 1B1 or AKRs but were manipulated by induction with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) to express P450 1A1/P450 1B1 or by stable transfection to express AKR1A1 (aldehyde reductase). TCDD induction of AKR1A1 transfectants provided a cell line that expressed both pathways. Extracts derived from parental H358 cells plus TCDD (P450 induction) produced electrophilic anti-BPDE, which hydrolyzed to benzo[a]pyrene tetrahydrotetrols (BP-tetrols), extracts derived from AKR1A1-transfected cells (AKR1A1 expression) produced reactive and redox-active BP-7,8-dione, which was trapped in situ as its mono(thioether) conjugate, and extracts derived from AKR1A1 transfectants plus TCDD (coexpression of P450 1A1/P450 1B1 and AKR1A1) produced both anti-BPDE and BP-7,8-dione. The competing activation of BP-7,8-diol by P450 1A1/P450 1B1 and AKR1A1 was studied with varied NADPH:NAD+ ratios. The system with a relatively higher concentration of NADPH favored formation of anti-BPDE via P450 1A1/P450 1B1, while the system with the higher concentration of NAD+ favored formation of BP-7,8-dione via AKR1A1. Under conditions that mimic the cellular redox state, 10 microM NADPH and 1 mM NAD+, equal amounts of BP-tetrols and BP-7,8-dione were formed. This suggests that P450 1A1/P450 1B1 and AKR1A1 play competing roles in the metabolic activation of BP-7,8-diol and that the dominant pathway of BP-7,8-diol activation depends on the redox state of the cells. These model systems provide a cellular context in which the dominant DNA adducts/lesions formed by either pathway may be compared.[Abstract] [Full Text] [Related] [New Search]