These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Stimulation of hepatocyte survival and suppression of CCl4-induced liver injury by the adenovirally introduced C/EBPbeta gene. Author: Isoda K, Koide H, Kojima M, Arita E, Ikkaku M, Higashiyama S, Tashiro F, Yamato E, Miyazaki J, Kawase M, Yagi K. Journal: Biochem Biophys Res Commun; 2005 Apr 01; 329(1):182-7. PubMed ID: 15721291. Abstract: Gene therapy has attracted attention as a potentially effective alternative to liver transplantation for the treatment of hepatic failure. We chose the C/EBPbeta gene, which plays vital roles in liver regeneration, as a candidate for gene therapy, and examined its effect on hepatocyte survival and the suppression of liver inflammation. C/EBPbeta gene overexpression significantly maintained hepatocyte viability during 12 days of the culture. Urea synthesis ability, which is a liver-specific function, in Adv-C/EBPbeta-infected hepatocytes was stably maintained during the culture, but the activity per cell was significantly lower than that in non-infected cells. On the contrary, DNA synthesis activity in Adv-C/EBPbeta-infected hepatocytes was significantly higher than that in non-infected cells. COX-2 was induced in Adv-C/EBPbeta-infected hepatocytes, and the addition of NS398, a specific inhibitor of COX-2, suppressed the viability-maintenance effect. COX-2 was thus shown to be involved in the survival effect of C/EBPbeta gene. The introduction of the C/EBPbeta gene into liver-damaged mice significantly suppressed the serum AST and ALT activities. These results indicate that C/EBPbeta appears to be a survival factor under stressful conditions, and the introduction of the gene has therapeutic function against liver injury.[Abstract] [Full Text] [Related] [New Search]