These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Establishment and characterization of new cellular lymphoma model expressing transgenic human MDR1.
    Author: Findling-Kagan S, Sivan H, Ostrovsky O, Nagler A, Galski H.
    Journal: Leuk Res; 2005 Apr; 29(4):407-14. PubMed ID: 15725475.
    Abstract:
    Multidrug resistance (MDR) due to the expression of the MDR1 gene and its P-glycoprotein (Pgp) product is a major factor in the prognosis and clinical outcome of patients with refractory lymphomas and other malignancies. The aim of our study was to establish a lymphoma, cellular system where a de novo acquisition of multidrug resistance is specifically related to overexpression of a transgenic, human MDR1. A multidrug sensitive lymphoma cell line (LM1) was established from a sporadic T-cell lymphoma of BALB/c mouse and was transduced by a retroviral vector containing the human MDR1 cDNA. The resultant cell variant (LM1/MDR) was characterized in comparison to the parental LM1 cells. The LM1/MDR cell variant is cross-resistant to DOX, COL, ACT D and VBL. This cell variant expresses the human MDR1 and exhibits de novo functional Pgp activity that can be blocked by the Pgp-modulators VRP and KT-5720. The acquired MDR of LM1/MDR is not accompanied with gene amplification, alternative splicing or up-regulation of the murine endogenous mdr1a, mdr1b, mrp1, mrp2 and mrp3 transporter-genes. Therefore, the acquired MDR is, specifically, human MDR1-dependent as it has been found in malignant cells of most lymphoma patients. Moreover, this system can be used as a model to study MDR and the efficacy of drugs and modulators on malignant cells where human Pgp is a major factor of multidrug resistance.
    [Abstract] [Full Text] [Related] [New Search]