These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Automated radioxenon monitoring for the comprehensive nuclear-test-ban treaty in two distinctive locations: Ottawa and Tahiti.
    Author: Stocki TJ, Blanchard X, D'Amours R, Ungar RK, Fontaine JP, Sohier M, Bean M, Taffary T, Racine J, Tracy BL, Brachet G, Jean M, Meyerhof D.
    Journal: J Environ Radioact; 2005; 80(3):305-26. PubMed ID: 15725505.
    Abstract:
    In preparation for verification of the Comprehensive Nuclear-Test-Ban-Treaty, automated radioxenon monitoring is performed in two distinctive environments: Ottawa and Tahiti. These sites are monitored with SPALAX (Systeme de Prelevement d'air Automatique en Ligne avec l'Analyse des radioXenons) technology, which automatically extracts radioxenon from the atmosphere and measures the activity concentrations of (131m,133m,133,135)Xe. The resulting isotopic concentrations can be useful to discern nuclear explosions from nuclear industry xenon emissions. Ambient radon background, which may adversely impact analyser sensitivity, is discussed. Upper concentration limits are reported for the apparently radioxenon free Tahiti environment. Ottawa has a complex radioxenon background due to proximity to nuclear reactors and medical isotope facilities. Meteorological models suggest that, depending on the wind direction, the radioxenon detected in Ottawa can be characteristic of the normal radioxenon background in the Eastern United States, Europe, and Japan or distinctive due to medical isotope production.
    [Abstract] [Full Text] [Related] [New Search]