These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: 3' Esters of ADP as energy-transfer inhibitors and probes of the catalytic site of oxidative phosphorylation. Author: Schäfer G, Onur G. Journal: Eur J Biochem; 1979 Jul; 97(2):415-24. PubMed ID: 157276. Abstract: 1. A large series of 3' esters of ADP has been synthesized. Several of these can serve as photoaffinity labels; others exhibit fluorescent properties. The corresponding AMP and ATP derivatives have also been synthesized in some cases. 2. The influence of the 3'-O-acyl nucleotides on energy-linked functions of beef-heart submitochondrial particles has been investigated. The following results were obtained. a) 3'Esters of ADP are powerful and highly specific inhibitors of oxidative phosphorylation. The inhibition is competitive to ADP and Ki values as low as 0.05 microM, for the 3'-O-(1)naphthoyl ester of ADP, could be observed. b) The inhibition of oxidative phosphorylation by 3' esters of ADP appears to be non-competitive versus inorganic phosphate. c) The nucleotide analogs are not phosphorylated themselves. The corresponding ATP analogs can not drive energy-linked process. d) The 3' esters of AMP are ineffective as inhibitors, whereas the ATP derivatives are only comparatively weak inhibitors. e) Uncoupled or solubilized ATPase is almost two orders of magnitude less sensitive against inhibition by 3' esters than coupled systems. The analogs exert maximal inhibition specifically in systems involving an 'energized' state of the coupling device. f) Azido-group-bearing analogs can be used for irreversible photoinactivation of the coupling ATPase. Photoinactivation also is most efficient when carried out with 'energized' particles. g) The inhibitory properties are similar also in ATP-driven NAD+ reduction by succinate, and in the uncoupler-sensitive ATP in equilibrium with Pi exchange. The required concentrations for half-maximal inhibition are somewhat higher than in oxidative phosphorylation, but lower than with uncoupled ATPase. 3. From molecular models, from substituent properties, and from the conditions required for inhibition it is concluded that these highly effective analogs of ADP may act as conformation-specific probes at the catalytic site of oxidative phosphorylation. The results are interpreted in terms of a model suggesting that, in the process of ATP synthesis, a hydrophobic cavity on the enzyme is exposed only in the energized state, accepting the large 3' substituent. The substituent is assumed to inhibit phosphoryl transfer and/or conformational transitions inherent in the process of ADP phosphorylation by steric hinderance.[Abstract] [Full Text] [Related] [New Search]