These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Vanishingly low levels of Ess1 prolyl-isomerase activity are sufficient for growth in Saccharomyces cerevisiae. Author: Gemmill TR, Wu X, Hanes SD. Journal: J Biol Chem; 2005 Apr 22; 280(16):15510-7. PubMed ID: 15728580. Abstract: Ess1 is an essential peptidylprolyl-cis/trans-isomerase in the yeast Saccharomyces cerevisiae. Ess1 and its human homolog, Pin1, bind to phospho-Ser-Pro sites within proteins, including the carboxyl-terminal domain (CTD) of Rpb1, the largest subunit of RNA polymerase II (pol II). Ess1 and Pin1 are thought to control mRNA synthesis by catalyzing conformational changes in Rpb1 that affect interaction of cofactors with the pol II transcription complex. Here we have characterized wild-type and mutant Ess1 proteins in vitro and in vivo. We found that Ess1 preferentially binds and isomerizes CTD heptad-repeat (YSPTSPS) peptides that are phosphorylated on Ser5. Binding by the mutant proteins in vitro was essentially normal, and the proteins were largely stable in vivo. However, their catalytic activities were reduced >1,000-fold. These data along with results of in vivo titration experiments indicate that Ess1 isomerase activity is required for growth, but only at vanishingly low levels. We found that although wild-type cells contain about approximately 200,000 molecules of Ess1, a level of fewer than 400 molecules per cell is sufficient for growth. In contrast, higher levels of Ess1 were required for growth in the presence of certain metabolic inhibitors, suggesting that Ess1 is important for tolerance to environmental challenge.[Abstract] [Full Text] [Related] [New Search]