These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Sensory and motor function of teeth and dental implants: a basis for osseoperception.
    Author: Trulsson M.
    Journal: Clin Exp Pharmacol Physiol; 2005; 32(1-2):119-22. PubMed ID: 15730446.
    Abstract:
    1. When dental implants are loaded mechanically, a sensation, often referred to as osseoperception, is evoked. The sensory signals underlying this phenomenon are qualitatively different from the signals evoked when loading a natural tooth. In contrast with osseointegrated dental implants, natural teeth are equipped with periodontal mechanoreceptors that signal information about tooth loads. In the present review, the functional properties of human periodontal mechanoreceptors will be presented, along with a discussion about their likely functional role in the control of human jaw actions. 2. Microneurographic experiments reveal that human periodontal mechanoreceptors adapt slowly to maintained tooth loads. Populations of periodontal receptors encode information about both which teeth are loaded and the direction of forces applied to individual teeth. 3. Most receptors exhibit a markedly curved relationship between discharge rate and force amplitude, featuring the highest sensitivity to changes in tooth load at surprisingly low forces (below 1 N for anterior teeth and 4 N for posterior teeth). Accordingly, periodontal receptors efficiently encode tooth load when subjects first contact, hold and gently manipulate food by the teeth. In contrast, only a minority of receptors encodes the rapid and strong increase in force generated when biting through food. 4. It is concluded that humans use periodontal afferent signals to control jaw actions associated with intra-oral manipulation of food rather than exertion of jaw power actions. Consequently, patients who lack information from periodontal receptors show an impaired fine motor control of the mandible.
    [Abstract] [Full Text] [Related] [New Search]