These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Adhesion of mutants streptococci to glass with and without a salivary coating as studied in a parallel-plate flow chamber. Author: Busscher HJ, Doornbusch GI, Van der Mei HC. Journal: J Dent Res; 1992 Mar; 71(3):491-500. PubMed ID: 1573082. Abstract: Deposition and adhesion to glass with and without a salivary coating in a parallel-plate flow chamber were studied with four strains of mutans streptococci. Stationary-state adhesion of the strains to uncoated glass ranged from 0.3 x 10(6) cm-2 (Streptococcus rattus HG218) to 12.7 x 10(6) cm-2 (Streptococcus sobrinus HG1025) and generally decreased after saliva coating of the glass. The poor adhesion found for S. rattus HG218 to both uncoated and saliva-coated glass could be due to its relatively high negative surface-charge. Deposition efficiencies of all strains were greater than or equal to 1 for uncoated glass and decreased greatly after saliva coating of the glass. Possibly, adhesion to a saliva coating is less efficient and more time-consuming than that to uncoated glass, because stereochemical groups in the pellicle and on the cell surfaces may have to re-arrange before an effective interaction can occur. Desorption rates, measured 1000 s and 5000 s after the start of an experiment, decreased by a factor of ten upon a five-fold increase in contact time, indicative of a two-phase adhesion process. Of the four strains studied, only Streptococcus cricetus HG737 showed a minor positive cooperativity on saliva-coated glass, possibly mediated by surface appendages observed by transmission electron microscopy on negatively-stained cells. Retention of adhering bacteria was strain-dependent on uncoated glass, but was identical for all strains on saliva-coated glass, which suggests that the structure and composition of the pellicle may be more important with respect to the retention of adhering cells than the cell-surface properties themselves.[Abstract] [Full Text] [Related] [New Search]