These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Increased diacylglycerol acyltransferase activity is associated with triglyceride accumulation in tissues of diet-induced insulin-resistant hyperlipidemic hamsters.
    Author: Casaschi A, Maiyoh GK, Adeli K, Theriault AG.
    Journal: Metabolism; 2005 Mar; 54(3):403-9. PubMed ID: 15736121.
    Abstract:
    Over-accumulation of triglyceride (TG) in insulin-sensitive tissues is associated with the development of insulin resistance. We investigated whether enhanced de novo lipogenesis via diacylglycerol acyltransferase (DGAT) may contribute to the over-accumulation of TG in various tissues (liver, adipose, muscle, and intestine) using 2 well-characterized hyperlipidemic, insulin-resistant hamster models. In general, a marked increase in TG accumulation was noted in most tissues. Interestingly, the increase in TG accumulation corresponded to an increase in microsomal DGAT activity which ranged from 114% to 575% in all of the examined tissues (n = 7 per group). To delineate the mechanism for the increase in DGAT activity, we measured the expression of DGAT-1 and DGAT-2 messenger RNA by relative reverse transcriptase polymerase chain reaction (RT-PCR). In general, DGAT gene expression changed with DGAT-1 changing the most in the liver and adipose tissue, whereas DGAT-2 showed responses mainly in muscle and intestine. The increases in messenger RNA expression were not remarkable (averaging 35%; n = 4 per group) indicating that posttranscriptional mechanism(s) may play a larger role in regulating DGAT activity. In summary, the data suggest that elevated DGAT activity/expression and the subsequent increase in de novo lipogenesis could in part induce the insulin-resistant state.
    [Abstract] [Full Text] [Related] [New Search]