These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Atomic force microscopy studies of ganglioside GM1alpha in dioleoylphosphatidylcholine/dipalmitoylphosphatidylcholine mixed monolayers and hybrid bilayers.
    Author: Takeda Y, Horito S.
    Journal: Colloids Surf B Biointerfaces; 2005 Mar 25; 41(2-3):111-6. PubMed ID: 15737535.
    Abstract:
    The membrane states of the alpha-series ganglioside GM1alpha in 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) mixed monolayers and hybrid bilayers were investigated using atomic force microscopy (AFM). The AFM image for the GM1alpha/DOPC/DPPC ternary monolayers showed the formation of GM1alpha-raft in the DOPC matrix. As increase of the surface pressure, GM1alpha are condensed in DPPC-rich domains; long and slender GM1alpha-rafts are separated from the DPPC-rich domains into the DOPC matrix. The GM1alpha/DOPC/DPPC ternary monolayers were deposited on mica coated with the first layer (1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine: DPPE) using the Langmuir-Schaeffer technique. The AFM image for the hybrid bilayers showed that same molecules were heterogeneously concentrated according to increase of the surface pressure to form GM1alpha-raft, DPPC-rich domain and DOPC matrix, being in agreement with the observation on the monolayer experiment. The found phenomenon implies that a binding of lectin to GM1alpha causes the increase of the surface pressure, the localization of GM1alpha and the succeeding formation of the raft as a first step of a specific signal transduction.
    [Abstract] [Full Text] [Related] [New Search]