These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A survey of left-handed helices in protein structures. Author: Novotny M, Kleywegt GJ. Journal: J Mol Biol; 2005 Mar 25; 347(2):231-41. PubMed ID: 15740737. Abstract: All naturally occurring amino acids with the exception of glycine contain one or more chiral carbon atoms and can therefore occur in two different configurations, L (levo, left-handed) and D (dextro, right-handed). Proteins are almost exclusively built from L-amino acids. The stereochemical bias of nature is further reflected at the secondary structure level where right-handed helices are strongly preferred over left-handed helices. The handedness of helices has not received much attention in the past and is often overlooked during the analysis, description and deposition of experimentally solved protein structures. Therefore, an extensive survey of left-handed helices in the Protein Data Bank (PDB) was undertaken to analyse their frequency of occurrence, length, amino acid composition, conservation and possible structural or functional role. All left-handed helices (of four or more residues) in a non-redundant subset of the PDB, were identified using hydrogen-bonding analysis, comparison of related structures, and experimental electron density assessment to filter out likely spurious and artefactual hits. This analysis yielded 31 verified left-handed helices in a set of 7284 proteins. The phi angles of the residues in the left-handed helices lie between 30 degrees and 130 degrees and the psi angles lie between -50 degrees and 100 degrees . Most of the helices are short (four residues) and for 87% of them, it was possible to determine that they are important for the stability of the protein, for ligand binding, or as part of the active site. This suggests that, even though left-handed helices are rare, when they do occur, they are structurally or functionally significant. Four secondary structure assignment programs were tested for their ability to identify the handedness of the helices. Of these programs, only DSSP correctly assigns the handedness.[Abstract] [Full Text] [Related] [New Search]