These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Is optimal solution of every NP-complete or NP-hard problem determined from its characteristic for DNA-based computing.
    Author: Guo M, Chang WL, Ho M, Lu J, Cao J.
    Journal: Biosystems; 2005 Apr; 80(1):71-82. PubMed ID: 15740836.
    Abstract:
    Cook's Theorem [Cormen, T.H., Leiserson, C.E., Rivest, R.L., 2001. Introduction to Algorithms, second ed., The MIT Press; Garey, M.R., Johnson, D.S., 1979. Computer and Intractability, Freeman, San Fransico, CA] is that if one algorithm for an NP-complete or an NP-hard problem will be developed, then other problems will be solved by means of reduction to that problem. Cook's Theorem has been demonstrated to be correct in a general digital electronic computer. In this paper, we first propose a DNA algorithm for solving the vertex-cover problem. Then, we demonstrate that if the size of a reduced NP-complete or NP-hard problem is equal to or less than that of the vertex-cover problem, then the proposed algorithm can be directly used for solving the reduced NP-complete or NP-hard problem and Cook's Theorem is correct on DNA-based computing. Otherwise, a new DNA algorithm for optimal solution of a reduced NP-complete problem or a reduced NP-hard problem should be developed from the characteristic of NP-complete problems or NP-hard problems.
    [Abstract] [Full Text] [Related] [New Search]