These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Enzyme-based impedimetric detection of PCR products using oligonucleotide-modified screen-printed gold electrodes.
    Author: Lucarelli F, Marrazza G, Mascini M.
    Journal: Biosens Bioelectron; 2005 Apr 15; 20(10):2001-9. PubMed ID: 15741069.
    Abstract:
    This paper describes the optimisation and the analytical performances of an enzyme-based electrochemical genosensor, developed using disposable oligonucleotide-modified screen-printed gold electrodes. The immobilisation of a thiol-tethered probe was qualitatively investigated by means of faradic impedance spectroscopy. Impedance spectra confirmed that the thiol moiety unambiguously drives the immobilisation of the oligonucleotide probe. Furthermore, both probe surface densities and hybridisation efficiencies were quantified through chronocoulometric measurements. Electrochemical transduction of the hybridisation process was also performed by means of faradic impedance spectroscopy, after coupling of a streptavidin-alkaline phosphatase conjugate and bio-catalysed precipitation of an insoluble and insulating product onto the sensing interface. Chronocoulometric results allowed discussion of the magnitude of hybridisation signals in terms of probe surface densities and their corresponding hybridisation efficiency. The genosensor response varied linearly (r2 = 0.9998) with the oligonucleotide target concentration over three orders of magnitude, between 12 pmol/L and 12 nmol/L. The estimated detection limit was 1.2 pmol/L (i.e., 7.2 x 10(6) target molecules in 10 microL of sample solution). The analytical usefulness of the impedimetric genosensor was finally demonstrated analysing amplified samples obtained from the pBI121 plasmid and soy and maize powders containing 1 and 5% of genetically modified product. Sensing of such unmodified amplicons was achieved via sandwich hybridisation with a biotinylated signaling probe. The electrochemical enzyme-amplified assay allowed unambiguous identification of all genetically modified samples, while no significant non-specific signal was detected in the case of all negative controls.
    [Abstract] [Full Text] [Related] [New Search]