These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Study of EPR, optical properties and electrical conductivity of vanadyl doped Bi2O3.PbO.B2O3 glasses. Author: Gahlot PS, Agarwal A, Seth VP, Sanghi S, Gupta SK, Arora M. Journal: Spectrochim Acta A Mol Biomol Spectrosc; 2005 Apr; 61(6):1189-94. PubMed ID: 15741120. Abstract: Heavy metal based oxide glasses having composition xBi(2)O(3).(0.30 - x)PbO.0.70B(2)O(3) have been prepared (0.00 < or = x < or = 0.15, mol%) containing 2.0mol% of V(2)O(5) by normal melt-quenching technique. Electron paramagnetic resonance (EPR), optical spectra and dc conductivity of these glasses have been studied. Spin Hamiltonian parameters (SHP) of VO(2+) ions, dipolar hyperfine parameter, P and Fermi contact interaction parameter, K, molecular orbital coefficients (alpha(2) and gamma(2)) and optical band gap have been calculated. It is observed that in these glasses, the tetragonal nature of V(4+)O(6) complex increases with Bi(2)O(3) content. Increase in Bi(2)O(3):PbO ratio results in the contraction of 3d(xy) orbit of the unpaired electron in the vanadium ion, and the SHP are dependent on the theoretical optical basicity, Lambda(th). In present glasses, the conductivity (activation energy) first decreases (increases) with increase in mol% of Bi(2)O(3) content upto x = 0.08 and then shows a maxima (minima) at x = 0.10 and then starts decreasing (increasing) upto x < or = 0.15 with mol% of Bi(2)O(3) content.[Abstract] [Full Text] [Related] [New Search]