These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Acute hyperoxaemia-induced effects on regional blood flow, oxygen consumption and central circulation in man.
    Author: Rousseau A, Bak Z, Janerot-Sjöberg B, Sjöberg F.
    Journal: Acta Physiol Scand; 2005 Mar; 183(3):231-40. PubMed ID: 15743383.
    Abstract:
    AIM: Despite numerous in vitro and animal studies, circulatory effects and mechanisms responsible for the vasoconstriction seen during hyperoxaemia are yet to be ascertained. The present study set out to: (i) set up a non-invasive human model for the study of hyperoxia-induced cardiovascular effects, (ii) describe the dynamics of this effect and (iii) determine whether hyperoxaemia also, by vasoconstriction alters oxygen consumption (O(2)). METHODS: The study comprised four experiments (A, B, C and D) on healthy volunteers examined before, during and after 100% oxygen breathing. A: Blood flow (mL min(-1).100 mL(-1) tissue), venous occlusion plethysmography was assessed (n = 12). B: Blood flow was recorded with increasing transcutaneous oxygen tension (P(tc)O(2)) levels (dose-response) (n = 8). C: Heart rate (HR), stroke volume, cardiac output (CO) and systemic vascular resistance (SVR) was assessed using echocardiography (n = 8). D: O(2) was measured using an open circuit technique when breathing an air-O(2) mix (fraction of inhaled oxygen: F(i)O(2) = 0.58) (n = 8). RESULTS: Calf blood flow decreased 30% during O(2) breathing. The decrease in calf blood flow was found to be oxygen dose dependent. A similar magnitude, as for the peripheral circulation, of the effect on central parameters (HR/CO and SVR) and in the time relationship was noted. Hyperoxia did not change O(2). An average of 207 (93) mL O(2) per subject was washed in during the experiments. CONCLUSION: This model appears suitable for the investigation of O(2)-related effects on the central and peripheral circulation in man. Our findings, based on a more comprehensive (central/peripheral circulation examination) evaluation than earlier made, suggest significant circulatory effects of hyperoxia. Further studies are warranted to elucidate the underlying mechanisms.
    [Abstract] [Full Text] [Related] [New Search]