These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Potential oxidative stress in the bodies of electric arc welding operators: effect of photochemical smog.
    Author: Zhu YG, Zhou JF, Shan WY, Zhou PS, Tong GZ.
    Journal: Biomed Environ Sci; 2004 Dec; 17(4):381-9. PubMed ID: 15745241.
    Abstract:
    OBJECTIVE: To investigate whether photochemical smog emitted during the process of electric arc welding might cause oxidative stress and potential oxidative damage in the bodies of welding operators. METHODS: Seventy electric arc welding operators (WOs) and 70 healthy volunteers (HVs) were enrolled in a randomized controlled study design, in which the levels of vitamin C (VC) and vitamin E (VE) in plasma as well as the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX), and the level of lipoperoxide (LPO) in erythrocytes were determined by spectrophotometry. RESULTS: Compared with the average values of the above experimental parameters in the HVs group, the average values of VC and VE in plasma as well as those of SOD, CAT and GPX in erythrocytes in the WOs group were significantly decreased (P < 0.005-0.0001), while the average value of LPO in erythrocytes in the WOs group was significantly increased (P < 0.0001). The findings from the partial correlation analysis on the controlling of age suggested that with a prolonged duration of exposure to photochemical smog the values of VC, VE, SOD, and GPX, except for CAT, in the WOs were decreased gradually (P < 0.05-0.005), the value of LPO in the WOs was increased gradually (P < 0.001), and that with the ozone dose increased in the air in each worksite VC, VE, SOD, CAT and GPX decreased (P < 0.005-0.001), but LPO increased (P < 0.001). The findings from the reliability analysis for the VC, VE, SOD, CAT, GPX, and LPO values which were used to reflect oxidative stress and potential oxidative damage in the WOs showed that the reliability coefficients' alpha (6 items) was 0.8021, P < 0.0001, and that the standardized item alpha was 0.9577, P < 0.0001. CONCLUSION: Findings in the present study suggest that there exists an oxidative stress induced by long-term exposure to photochemical smog in the bodies of WOs, thereby causing potential oxidative and lipoperoxidative damages in their bodies.
    [Abstract] [Full Text] [Related] [New Search]