These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Low expression of lipid-linked oligosaccharide due to a functionally altered Dol-P-Man synthase reduces protein glycosylation in cAMP-dependent protein kinase deficient Chinese hamster ovary cells.
    Author: Banerjee DK, Aponte E, Dasilva JJ.
    Journal: Glycoconj J; 2004; 21(8-9):479-86. PubMed ID: 15750789.
    Abstract:
    Chinese hamster ovary cells express a wide variety of glycoproteins with Mr ranging from 15,000 to 200,000 dalton and higher. Glycosylation of these proteins was much less in cAMP-dependent protein kinase (PKA)-deficient mutants which expressed either (i) a defective C-subunit with altered substrate specificity and having no detectable type II kinase (mutant 10215); or (ii) an altered RI subunit and having no detectable type II kinase (mutant 10248); or (iii) exhibited the lowest level of total kinase with no detectable type I kinase but having a small amount of type II kinase (mutant 10260). Addition of 8Br-cAMP enhanced protein glycosylation index in wild type cells 10001 by 120% but only 7 to 23% in the mutant cells. The rate of lipid-linked oligosaccharide (LLO) biosynthesis was linear for 1 h in all cell types, but the total amount of LLO expressed was much less in PKA-deficient mutants. Pulse-chase experiments indicated that the t1/2 for LLO turnover was also twice as high in PKA-deficient cells as in the wild type. Size exclusion chromatography of the mild-acid released oligosaccharide confirmed that both wild type and the mutant cells synthesized Glc3Man9GlcNAc2-PP-Dol as the most predominating species with no accumulation of Man5GlcNAc2-PP-Dol in the mutants. Kinetic studies exhibited a reduced mannosylphosphodolichol synthase (DPMS) activity in mutant cells with a Km for GDP-mannose 160 to 400% higher than that of the wild type. In addition, the kcat for DPMS was also reduced 2 to 4-fold in these mutant cells. Exogenously added Dol-P failed to rescue the kcat for DPMS in CHO cell mutants; however, in vitro protein phosphorylation with a cAMP-dependent protein kinase restored their kinetic activity to the level of the wild type.
    [Abstract] [Full Text] [Related] [New Search]