These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Distinguishing levuglandins produced through the cyclooxygenase and isoprostane pathways. Author: Salomon RG. Journal: Chem Phys Lipids; 2005 Mar; 134(1):1-20. PubMed ID: 15752459. Abstract: The cyclooxygenase (COX) pathway generates enantiomerically pure levuglandin (LG) E(2) by a rearrangement of the prostaglandin (PG) endoperoxide PGH(2). The isoprostane pathway generates racemic LGE(2) together with stereoisomers, designated collectively as isoLGE(2), through free radical-induced lipid oxidation. Within seconds, both LGs and isoLGs are rapidly sequestered by protein adduction. In theory, the diastereomeric purity of LGE(2)-protein adduct-derived lysyl lactams can reveal the relative contributions of the COX and isoprostane pathways to LGE(2) stereoisomer production in vivo. Notably, however, the detection of LGE(2)-protein adducts does not provide a basis for inferring their formation through the isoprostane pathway in vivo unless the COX pathway can be rigorously excluded. In contrast, LGE(2)structural isomers, designated collectively as iso[n]LGE(2)s, are produced exclusively through the isoprostane pathway. Immunoassays that selectively recognize iso[n]LGE(2)-protein adducts are the only tools available to unambiguously detect and quantify the production of isolevuglandins in vivo through free radical-induced oxidation of arachidonates.[Abstract] [Full Text] [Related] [New Search]