These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Sorcin interacts with sarcoplasmic reticulum Ca(2+)-ATPase and modulates excitation-contraction coupling in the heart.
    Author: Matsumoto T, Hisamatsu Y, Ohkusa T, Inoue N, Sato T, Suzuki S, Ikeda Y, Matsuzaki M.
    Journal: Basic Res Cardiol; 2005 May; 100(3):250-62. PubMed ID: 15754088.
    Abstract:
    Sorcin is a 21.6-kDa Ca(2+) binding protein of the penta-EF hand family. Several studies have shown that sorcin modulates multiple proteins involved in excitation-contraction (E-C) coupling in the heart, such as the cardiac ryanodine receptor (RyR2), L-type Ca(2+) channel, and Na(+)-Ca(2+) exchanger, while it has also been shown to be phosphorylated by cAMP-dependent protein kinase (PKA). To elucidate the effects of sorcin and its PKA-dependent regulation on E-C coupling in the heart, we identified the PKA-phosphorylation site of sorcin, and found that serine178 was preferentially phosphorylated by PKA and dephosphorylated by protein phosphatase-1. Isoproterenol allowed sorcin to translocate to the sarcoplasmic reticulum (SR). In addition, adenovirus-mediated overexpression of sorcin in adult rat cardiomyocytes significantly increased both the rate of decay of the Ca(2+) transient and the SR Ca(2+) load. An assay of oxalate-facilitated Ca(2+) uptake showed that recombinant sorcin increased Ca(2+) uptake in a dose-dependent manner. These data suggest that sorcin activates the Ca(2+)-uptake function in the SR. In UM-X7. 1 cardiomyopathic hamster hearts, the relative amount of sorcin was significantly increased in the SR fraction, whereas it was significantly decreased in whole-heart homogenates. In failing hearts, PKA-phosphorylated sorcin was markedly increased, as assessed using a back-phosphorylation assay with immunoprecipitated sorcin. Our results suggest that sorcin activates Ca(2+)-ATPase-mediated Ca(2+) uptake and restores SR Ca(2+) content, and may play critical roles in compensatory mechanisms in both Ca(2+) homeostasis and cardiac dysfunction in failing hearts.
    [Abstract] [Full Text] [Related] [New Search]