These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Nano-scaled hydroxyapatite/polymer composite III. Coating of sintered hydroxyapatite particles on poly(4-methacryloyloxyethyl trimellitate anhydride)-grafted silk fibroin fibers.
    Author: Korematsu A, Furuzono T, Yasuda S, Tanaka J, Kishida A.
    Journal: J Mater Sci Mater Med; 2005 Jan; 16(1):67-71. PubMed ID: 15754146.
    Abstract:
    A novel composite coupling between nano-scaled hydroxyapatite (HAp) particles and poly[4-methacryloyloxyethyl trimellitate anhydride (4-META)]-grafted silk fibroin (SF) through ionic interaction was synthesized. The weight gain of poly(4-META) by graft-polymerization increased with increasing the reaction time, eventually reaching a plateau value of about 20 wt%. The HAp nano-particles were adsorbed equally and dispersively on the treated SF fiber surface. The HAp content in the composite was 4.554 wt% +/- 0.098 (n = 4), confirmed by thermogravimetry (TG). This synthetic system requires no heat to connect HAp to SF and is useful when applying to non-heat-resistant polymers. The L-929 cell-adhesion test shows that the HAp/SF composite improves bioactivity compared to the original SF.
    [Abstract] [Full Text] [Related] [New Search]