These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Adaptive spectral strain estimators for elastography.
    Author: Alam SK, Lizzi FL, Varghese T, Feleppa EJ, Ramachandran S.
    Journal: Ultrason Imaging; 2004 Jul; 26(3):131-49. PubMed ID: 15754795.
    Abstract:
    In conventional elastography, internal tissue deformations, induced by external compression applied to the tissue surface, are estimated by cross-correlation analysis of echo signals obtained before and after compression. Conventionally, strains are estimated by computing the gradient of estimated displacement. However, gradient-based algorithms are highly susceptible to noise and decorrelation, which could limit their utility. We previously developed strain estimators based on a frequency-domain (spectral) formulation that were shown to be more robust but less precise compared to conventional strain estimators, In this paper, we introduce a novel spectral strain estimator that estimates local strain by maximizing the correlation between the spectra of pre- and postcompression echo signals using iterative frequency-scaling of the latter; we also discuss a variation of this algorithm that may be computationally more efficient but less precise. The adaptive spectral strain estimator combines the advantages of time- and frequency-domain methods and has outperformed conventional estimators in experiments and 2-D finite-element simulations.
    [Abstract] [Full Text] [Related] [New Search]