These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Evaluation of macrocyclic Grb2 SH2 domain-binding peptide mimetics prepared by ring-closing metathesis of C-terminal allylglycines with an N-terminal beta-vinyl-substituted phosphotyrosyl mimetic.
    Author: Oishi S, Karki RG, Shi ZD, Worthy KM, Bindu L, Chertov O, Esposito D, Frank P, Gillette WK, Maderia M, Hartley J, Nicklaus MC, Barchi JJ, Fisher RJ, Burke TR.
    Journal: Bioorg Med Chem; 2005 Apr 01; 13(7):2431-8. PubMed ID: 15755645.
    Abstract:
    Preferential binding of ligands to Grb2 SH2 domains in beta-bend conformations has made peptide cyclization a logical means of effecting affinity enhancement. This is based on the concept that constraint of open-chain sequences to bend geometries may reduce entropy penalties of binding. The current study extends this approach by undertaking ring-closing metathesis (RCM) macrocyclization between i and i+3 residues through a process involving allylglycines and beta-vinyl-functionalized residues. Ring closure in this fashion results in minimal macrocyclic tetrapeptide mimetics. The predominant effects of such macrocyclization on Grb2 SH2 domain binding affinity were increases in rates of association (from 7- to 16-fold) relative to an open-chain congener, while decreases in dissociation rates were less pronounced (approximately 2-fold). The significant increases in association rates were consistent with pre-ordering of solution conformations to near those required for binding. Data from NMR experiments and molecular modeling simulations were used to interpret the binding results. An understanding of the conformational consequences of such i to i+3 ring closure may facilitate its application to other systems where bend geometries are desired.
    [Abstract] [Full Text] [Related] [New Search]