These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Coupling of metabotropic glutamate receptor 8 to N-type Ca2+ channels in rat sympathetic neurons.
    Author: Guo J, Ikeda SR.
    Journal: Mol Pharmacol; 2005 Jun; 67(6):1840-51. PubMed ID: 15755905.
    Abstract:
    Group III metabotropic glutamate receptors (mGluRs; mGluR4, 6, 7, and 8) couple to the Galpha(i/o)-containing G protein heterotrimers and act as autoreceptors to regulate glutamate release, probably by inhibiting voltage-gated Ca(2+) channels. Although most mGluRs have been functionally expressed in a variety of systems, few studies have demonstrated robust coupling of mGluR8 to downstream effectors. We therefore tested whether activation of mGluR8 inhibited Ca(2+) channels. Both L-glutamate (L-Glu) and l-2-amino-4-phosphonobutyric acid (L-AP4), a selective agonist for group III mGluRs, inhibited N-type Ca(2+) current in rat superior cervical ganglion neurons previously injected with a cDNA encoding mGluR8a/b. L-AP4 was approximately 100-fold more potent (IC(50) = 0.1 microM) than L-Glu ( approximately 10 microM), but it had efficacy similar to that of L-Glu ( approximately 50% maximal inhibition). The potency and efficacy of L-AP4 and L-Glu were similar for both splice variants. Agonist-induced inhibition was abolished by pretreatment with (R,S)-alpha-cyclopropyl-4-phosphonophenylglycine, a selective group III mGluR antagonist, and pertussis toxin. Deletion of either a calmodulin (CaM) binding motif in the C terminus or the entire C terminus of mGluR8 did not affect mGluR8-mediated response. Our studies indicate that both mGluR8a and 8b are capable of inhibiting N-type Ca(2+) channel, suggesting a role as presynaptic autoreceptors to regulate neuronal excitability. The studies also imply that the potential CaM binding domain is not required for the mGluR8-mediated Ca(2+) channel inhibition and the C terminus of mGluR8a is dispensable for receptor coupling to N-type Ca(2+) channels.
    [Abstract] [Full Text] [Related] [New Search]