These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Celecoxib inhibits prostate cancer growth: evidence of a cyclooxygenase-2-independent mechanism.
    Author: Patel MI, Subbaramaiah K, Du B, Chang M, Yang P, Newman RA, Cordon-Cardo C, Thaler HT, Dannenberg AJ.
    Journal: Clin Cancer Res; 2005 Mar 01; 11(5):1999-2007. PubMed ID: 15756026.
    Abstract:
    PURPOSE: Selective cyclooxygenase-2 (COX-2) inhibitors may suppress carcinogenesis by both COX-2-dependent and COX-2-independent mechanisms. The primary purpose of this study was to evaluate whether celecoxib or rofecoxib, two widely used selective COX-2 inhibitors, possess COX-2-independent antitumor activity. EXPERIMENTAL DESIGN: PC3 and LNCaP human prostate cancer cell lines were used to investigate the growth inhibitory effects of selective COX-2 inhibitors in vitro. To complement these studies, we evaluated the effect of celecoxib on the growth of PC3 xenografts. RESULTS: COX-1 but not COX-2 was detected in PC3 and LNCaP cells. Clinically achievable concentrations (2.5-5.0 micromol/L) of celecoxib inhibited the growth of both cell lines in vitro, whereas rofecoxib had no effect over the same concentration range. Celecoxib inhibited cell growth by inducing a G(1) cell cycle block and reducing DNA synthesis. Treatment with celecoxib also led to dose-dependent inhibition of PC3 xenograft growth without causing a reduction in intratumor prostaglandin E(2). Inhibition of tumor growth occurred at concentrations (2.37-5.70 micromol/L) of celecoxib in plasma that were comparable with the concentrations required to inhibit cell growth in vitro. The highest dose of celecoxib led to a 52% reduction in tumor volume and an approximately 50% decrease in both cell proliferation and microvessel density. Treatment with celecoxib caused a marked decrease in amounts of cyclin D1 both in vitro and in vivo. CONCLUSIONS: Two clinically available selective COX-2 inhibitors possess different COX-2-independent anticancer properties. The anticancer activity of celecoxib may reflect COX-2-independent in addition to COX-2-dependent effects.
    [Abstract] [Full Text] [Related] [New Search]