These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: FISH of supernumerary marker chromosomes (SMCs) identifies six diagnostically relevant intervals on chromosome 22q and a novel type of bisatellited SMC(22). Author: Bartsch O, Rasi S, Hoffmann K, Blin N. Journal: Eur J Hum Genet; 2005 May; 13(5):592-8. PubMed ID: 15756300. Abstract: Supernumerary marker chromosomes (SMCs) are frequently found at pre- and postnatal cytogenetic diagnosis and require identification. A disproportionally large subset of SMCs is derived from the human chromosome 22 and confers tri- or tetrasomy for the cat eye chromosomal region (CECR, the proximal 2 Mb of chromosome 22q) and/or other segments of 22q. Using fluorescence in situ hybridization (FISH) and 15 different DNA probes, we studied nine unrelated patients with an SMC(22) that contained the CECR. Five patients showed the small (type I) cat eye syndrome (CES) chromosome and each one had the larger (type II) CES chromosome, small ring chromosome 22, der(22)t(11;22) extrachromosome, and a novel type of bisatellited SMC(22) with breakpoints outside the low-copy repeats (LCRs22). By size and morphology, the novel bisatellited SMC(22) resembled the typical (types I and II) CES chromosomes, but it might have been associated with the chromosome 22q duplication syndrome, not CES. This SMC included a marker from band 22q12.3 and conferred only one extra copy each of the 22 centromere, CECR, and common 22q11 deletion area. There has been no previous report of a bisatellited SMC(22) predicting the chromosome 22q duplication syndrome. Accounting for the cytogenetic resemblance to CES chromosomes but different makeup and prognosis, we propose naming this an atypical (type III) CES chromosome. In this study, we found six distinct intervals on 22q to be relevant for FISH diagnostics. We propose to characterize SMCs(22) using DNA probes corresponding to these intervals.[Abstract] [Full Text] [Related] [New Search]