These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Expression of p53 and p21 in primary glioblastomas.
    Author: Gross MW, Kraus A, Nashwan K, Mennel HD, Engenhart-Cabillic R, Schlegel J.
    Journal: Strahlenther Onkol; 2005 Mar; 181(3):164-71. PubMed ID: 15756520.
    Abstract:
    BACKGROUND AND PURPOSE: Primary glioblastomas (GBMs) are highly radioresistant, and in contrast to secondary GBMs, they bear wild-type (wt) p53 protein, which is stabilized in a proportion of these tumors. Therefore, it was investigated in vivo whether p53 expression has prognostic value in patients undergoing radiochemotherapy. Additionally, the authors tried to identify, in vitro, subgroups of primary GBM with different susceptibilities to irradiation, on the basis of their p53 and p21 responses to ionizing radiation. MATERIAL AND METHODS: Tumor tissue samples from 31 patients suffering from primary GBM undergoing a combined radiochemotherapy with topotecan were investigated. The percentage of cells expressing p53 protein was determined immunohistochemically. Additionally, primary cultures from eleven primary GBMs were established and investigated. p53 and p21 expressions were evaluated before irradiation with 10 Gy and at 2 and 8 h after irradiation. p53 protein expression was measured by Western analysis and p21 mRNA expression by reverse transcription-polymerase chain reaction (RT-PCR). RESULTS: The percentage of p53-positive cells within the tumor specimens obtained from the 31 patients ranged from 0% to 28%, the median value being 4.3%. No significant correlation with disease-free survival or overall survival was found. In vitro, p53 protein was detected in seven of eleven cultures from primary GBM. After irradiation a decrease in p53 protein expression was seen in six of the seven p53-positive cultures. Half of the cultures (two of four) without basal p53 expression showed an increase in p53 expression after irradiation. Basal overexpression of p21 was detected in six of the eleven cultures; in four out of six irradiation led to a decrease in p21 expression. In all cell lines (five of eleven) initially showing absent p21 expression, irradiation induced p21 expression. Despite these responses, G1 arrest was not detectable in any of the GBM cultures. CONCLUSION: p53 protein expression in vivo does not correlate with the outcome of patients with primary GBM. Therefore, p53 protein content per se does not appear to be a helpful prognostic factor for prognosis-adapted therapy in primary GBM. By contrast, primary GBM cells in vitro show different and independent responses in their p53 and p21 pathways to ionizing radiation. The failure of G1 arrest seems to be due to a functional defect in the p53 pathway, either because p21 was not induced or because of an unidentified defect downstream from p21.
    [Abstract] [Full Text] [Related] [New Search]