These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mice lacking the major adult GABAA receptor subtype have normal number of synapses, but retain juvenile IPSC kinetics until adulthood. Author: Bosman LW, Heinen K, Spijker S, Brussaard AB. Journal: J Neurophysiol; 2005 Jul; 94(1):338-46. PubMed ID: 15758057. Abstract: There is a large variation in structurally and functionally different GABA(A) receptor subtypes. The expression pattern of GABA(A) receptor subunits is highly regulated, both temporarily and spatially. Especially during development, profound changes in subunit expression have been described. In most brain areas, the GABA(A) receptor alpha1 subunit replaces the alpha2 and/or alpha3 subunit as major alpha subunit. This is accompanied by a marked decrease in the open time of GABA(A) receptors and hence in the duration of postsynaptic responses. We describe here the development of GABAergic, synaptic transmission in mice lacking the alpha1 subunit. We show that alpha1 is to a large extent--but not entirely--responsible for the relatively short duration of postsynaptic responses in the developing and the mature brain. However, alpha1 already affects GABAergic transmission in the neonatal cerebral cortex when it is only sparsely expressed. It appears that the alpha1 -/- mice do not show a large reduction in GABAergic synapses but do retain long-lasting postsynaptic currents into adulthood. Hence, they form a good model to study the functional role of developmental GABA(A) receptor subunit switching.[Abstract] [Full Text] [Related] [New Search]