These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Automated electrochemical synthesis and photoelectrochemical characterization of Zn1-xCo(x)O thin films for solar hydrogen production. Author: Jaramillo TF, Baeck SH, Kleiman-Shwarsctein A, Choi KS, Stucky GD, McFarland EW. Journal: J Comb Chem; 2005; 7(2):264-71. PubMed ID: 15762755. Abstract: High-throughput electrochemical methods have been developed for the investigation of Zn1-xCo(x)O films for photoelectrochemical hydrogen production from water. A library of 120 samples containing 27 different compositions (0 <or= x <or= 0.068) was synthesized by automated serial electrochemical deposition. High-throughput photoelectrochemical screening revealed improved solar hydrogen production for the cobalt-doped films, with Zn0.956Co0.044O exhibiting a 4-fold improvement over pure ZnO with no external bias. Flat-band potential, bias-dependent photocurrent, and action spectra were also measured automatically with the high-throughput screening system. The 200-nm-thick films were subsequently characterized by numerous techniques, including SEM, XRD, XPS, and UV-vis, which show that the depositions are well-controlled. Zn/Co stoichiometry in the films was controlled by the ratio of the Zn and Co precursors in each deposition bath. All films exhibited the wurtzite structure typical of pure ZnO, and the Co2+ appears to substitute Zn2+, forming a single-phase solid solution. Band gaps of the solid solutions were systematically lower than the 3.2-eV band gap typical of ZnO.[Abstract] [Full Text] [Related] [New Search]