These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Estimation of the muscle fibre semi-length under varying joint positions on the basis of non-invasively extracted motor unit action potentials. Author: Schulte E, Dimitrova NA, Dimitrov GV, Rau G, Disselhorst-Klug C. Journal: J Electromyogr Kinesiol; 2005 Jun; 15(3):290-9. PubMed ID: 15763676. Abstract: Changes in muscle fibre length and surface electrode position with respect to the muscle fibres affect the amplitude and frequency characteristics of surface electromyography (SEMG) in different ways. Knowledge of changes in muscle fibre length would help towards a better interpretation of the signals. The possibility of estimating the length through SEMG during voluntary contractions was checked in this study. The fibres' semi-length was estimated from the product of the conduction velocity and conduction time during which the wave of excitation propagated from the end-plate region to the ends of the fibres. Short (10 s), moderate (30% of maximum voluntary contraction) isometric contractions were performed by 10 subjects at different elbow joint angles (80-140 degrees in steps of 20 degrees ). Monopolar signals were detected non-invasively, using a two-dimensional electrode array. High spatial resolution EMG and a decomposition technique were utilised to extract single motor unit activities for triggered averaging and to estimate conduction velocity. A significant increase with joint angle was found in conduction time and estimated fibre semi-length. Changes in conduction velocity with joint angle were found to be not significant. The methodology described allows the relative changes in fibres' semi-length to be estimated from SEMG data.[Abstract] [Full Text] [Related] [New Search]