These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: An acute release of Ca2+ from sequestered intracellular pools is not the primary transduction mechanism causing the initial burst of PRL and TSH secretion induced by TRH in normal rat pituitary cells. Author: Sato N, Wang X, Greer MA. Journal: Cell Calcium; 1992 Mar; 13(3):173-82. PubMed ID: 1576637. Abstract: With 1.5 mM [Ca2+]e, 10 nM TRH induced a prompt high-amplitude burst of hormone secretion and an initial high-amplitude [Ca2+]i burst (first phase) followed by a sustained low-amplitude [Ca2+]i increment (second phase) in both tumor-derived GH4C1 and normal adenohypophyseal (AP) cells. With less than 2 microM [Ca2+]e, in both cell types the TRH-induced first phase rise in [Ca2+]i was suppressed 30% while the second phase rise was completely abolished; however, hormone secretion was inhibited only 20-30% in GH4C1 but greater than 80% in AP cells. Thapsigargin induced a first-phase rise in [Ca2+]i in AP cells equal to that induced by 10 nM TRH but only 20% as much first-phase hormone secretion. Blocking Ca2+ channels with nifedipine inhibited TRH-induced secretion in AP cells significantly more than in GH4C1 cells. Our data indicate that the TRH-induced first-phase spike in [Ca2+]i from intracellular Ca2+ stores may play a major transduction role in hormone secretion in GH4C1 cells but not in normal AP cells. Transduction mechanisms coupled to Ca2+ influx through Ca2+ channels in the plasmalemma are apparently a much more important component of TRH-induced secretion in normal than in tumor-derived pituitary cells.[Abstract] [Full Text] [Related] [New Search]