These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Identification of the regions of PECAM-1 involved in beta- and gamma-catenin associations.
    Author: Biswas P, Zhang J, Schoenfeld JD, Schoenfeld D, Gratzinger D, Canosa S, Madri JA.
    Journal: Biochem Biophys Res Commun; 2005 Apr 22; 329(4):1225-33. PubMed ID: 15766557.
    Abstract:
    Platelet endothelial cell adhesion molecule-1 (PECAM-1) binds tyrosine-phosphorylated beta-catenin and modulates beta-catenin localization and sequestration. The biological significance of this interaction, while still unclear, it has been postulated to be involved in modulating adherens junction dynamics in response to perturbants [J. Clin. Invest. 109 (2002) 383]. Here we demonstrate that tyrosine-phosphorylated beta-catenin, and to a lesser extent unphosphorylated beta-catenin, interact with a portion of the cytoplasmic domain of PECAM-1 encoded by exon 15. Using RT-PCR, we obtained products representing alternatively spliced PECAM-1 isoforms from mouse kidney total mRNA and generated PECAM-1-GST constructs expressing full length and naturally occurring alternatively spliced PECAM-1 variants. Co-precipitation assays revealed that the protein sequence encoded by exon 15 is necessary for beta-catenin binding. Transfections using deletion mutants confirmed the importance of the exon 15 sequence in this interaction. In contrast, gamma-catenin-PECAM-1 interactions are thought to be modulated by an as yet undefined PECAM-1 serine phosphorylation and appear to mediate dynamic PECAM-1 intermediate filament cytoskeletal interactions [J. Biol. Chem. 275 (2000) 21435]. Here we demonstrate that the PECAM-1-gamma-catenin interaction occurs via an exon 13-mediated process. GST-pull-down assays illustrated the importance of the exon 13 sequence in this interaction. Further, using site-directed mutagenesis of S(673) to C and D and S(669 and 670) to C, we confirmed the importance of S(673) and its phosphorylation state as a mediator of gamma-catenin-PECAM-1 binding. Our studies define the exons of the PECAM-1 cytoplasmic domain that is involved in mediating these PECAM-1-catenin family member interactions and will allow investigators to better define the biological functions resulting from these interactions.
    [Abstract] [Full Text] [Related] [New Search]