These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Assay of disulfide oxidase and isomerase based on the model of hirudin folding.
    Author: Lu BY, Chang JY.
    Journal: Anal Biochem; 2005 Apr 01; 339(1):94-103. PubMed ID: 15766715.
    Abstract:
    Oxidative folding of fully reduced hirudin (R-Hir, six cysteines) undergoes two distinct stages. A first stage of nonspecific disulfide formation promoted by oxidase converts R-Hir to form 3-disulfide scrambled hirudins (X-Hir) as obligatory intermediates. A second stage of disulfide shuffling catalyzed by isomerase converts X-Hir to the native hirudin (N-Hir). The model of hirudin folding is utilized here to develop an assay system for measuring the activity of disulfide oxidase and isomerase, using high-performance liquid chromatography (HPLC) quantification of R-Hir, X-Hir, and N-Hir. The oxidase assay measures the ability of an oxidase to promote R-HirX-Hir conversion. The molar specific activity is expressed as mol ofR-Hir decrease per mol of oxidase per min. The isomerase assay measures the ability of an isomerase to catalyze X-HirN-Hir transformation. The molar specific activity is expressed as mol ofN-Hir increase per mol of isomerase per min. Alternatively, the recovery of N-Hir in the isomerase assay can be determined by its alpha-thrombin inhibitory activity. Using both HPLC and activity-based assay, we have measured the relative oxidase and isomerase activity of reduced and oxidized glutathione, Cys, Cys-Cys, and reduced and oxidized protein disulfide isomerase (PDI). The molar specific activity of reduced PDI was shown to be 0.1+/-0.01 U, which is consistent with documented data obtained by the scrambled RNase-A-based assay. These proposed assay methods provide alternatives to the limited option of methodologies currently available for measuring oxidase and isomerase activities. A major merit of the proposed assay system is the potential to accommodate the analysis of biological samples.
    [Abstract] [Full Text] [Related] [New Search]