These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Disruption of granulocyte macrophage-colony stimulating factor production in the lungs severely affects the ability of mice to control Mycobacterium tuberculosis infection.
    Author: Gonzalez-Juarrero M, Hattle JM, Izzo A, Junqueira-Kipnis AP, Shim TS, Trapnell BC, Cooper AM, Orme IM.
    Journal: J Leukoc Biol; 2005 Jun; 77(6):914-22. PubMed ID: 15767289.
    Abstract:
    Mice lacking expression of granulocyte macrophage-colony stimulating factor (GM-CSF KO) are unable to contain Mycobacterium tuberculosis (M. tuberculosis) growth and succumb to infection by 35 days following pulmonary challenge. GM-CSF KO mice do not express normal levels of the inflammatory cytokine tumor necrosis factor alpha (TNF-alpha) nor the chemokines, regulated on activation, normal T expressed and secreted (RANTES), macrophage-inflammatory protein-1beta (MIP-1beta), MIP-1alpha, and lymphotactin, which are required for recruitment of lymphocytes and expression of a T helper cell type 1 (TH1) response within the lungs. In contrast, transgenic mice overexpressing GM-CSF in the lungs but with a lack of GM-CSF in other organs (GM+) are able to recruit lymphocytes and to express a TH1 response with production of TNF-alpha and interferon-gamma in the lungs. However, GM+ mice succumb to infection between 60 and 90 days post-challenge, as they are unable to develop a normal granulomatous response. Although GM+ mice are able to express the chemokine RANTES, they lack the ability to express other inflammatory chemokines such as lymphotactin and MIP-1beta. We conclude that GM-CSF is essential to the recruitment of lymphocytes and expression of a TH1 response in the lung, to the generation of a normal mononuclear granuloma, and most importantly, to the containment of M. tuberculosis bacterial growth.
    [Abstract] [Full Text] [Related] [New Search]