These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: In vivo muscle function vs speed. II. Muscle function trotting up an incline.
    Author: Wickler SJ, Hoyt DF, Biewener AA, Cogger EA, De La Paz KL.
    Journal: J Exp Biol; 2005 Mar; 208(Pt 6):1191-200. PubMed ID: 15767317.
    Abstract:
    Different locomotor tasks, such as moving up or down grades or changing speed, require that muscles adjust the amount of work they perform to raise or lower, accelerate or decelerate the animal's center of mass. During level trotting in the horse, the triceps had shortening strains of around 10.6% while the vastus shortened 8.1% during the stance phase. Because of the 250% increase in metabolic rate in horses trotting up a 10% incline which is, presumably, a result of the increased requirement for mechanical work, we hypothesized that muscle strain during trotting would be increased in both the triceps and the vastus over that observed when trotting on the level. Because times of contact are similar in level and incline trotting, we also hypothesized that strain rates of these muscles would be increased, accompanied by an increase in EMG activity. We examined the lateral head of the triceps and the vastus lateralis while trotting up a 10% incline (5.7 degrees) over a range of speeds. The triceps shortened by 18% compared with 10.6% shortening on the level, and the vastus shortened by 18.5% compared with 8.1% on the level. The increased shortening velocities that were observed in both muscles probably reduced the force that any given set of activated muscle fibers could produce. If this pattern held for other limb muscles that do work to elevate the horse's center of mass on an incline, then a greater volume of muscle would have to be recruited to generate an equivalent force for body support. This was reflected in significant increases in the EMG intensity (IEMG) of both muscles.
    [Abstract] [Full Text] [Related] [New Search]