These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Synthesis and evaluation of a star amphiphilic block copolymer from poly(epsilon-caprolactone) and poly(ethylene glycol) as a potential drug delivery carrier. Author: Wang F, Bronich TK, Kabanov AV, Rauh RD, Roovers J. Journal: Bioconjug Chem; 2005; 16(2):397-405. PubMed ID: 15769095. Abstract: A star polymer composed of amphiphilic block copolymer arms has been synthesized and characterized. The core of the star polymer is polyamidoamine (PAMAM) dendrimer, the inner block in the arm is lipophilic poly(epsilon-caprolactone) (PCL), and the outer block in the arm is hydrophilic poly(ethylene glycol) (PEG). The star-PCL polymer was synthesized first by ring-opening polymerization of epsilon-caprolactone with a PAMAM-OH dendrimer as initiator. The PEG polymer was then attached to the PCL terminus by an ester-forming reaction. Characterization with SEC, (1)H NMR, FTIR, TGA, and DSC confirmed the star structure of the polymers. The micelle formation of the star copolymer (star-PCL-PEG) was studied by fluorescence spectroscopy. Hydrophobic dyes and drugs can be encapsulated in the micelles. A loading capacity of up to 22% (w/w) was achieved with etoposide, a hydrophobic anticancer drug. A cytotoxicity assay demonstrated that the star-PCL-PEG copolymer is nontoxic in cell culture. This type of block copolymer can be used as a drug delivery carrier.[Abstract] [Full Text] [Related] [New Search]