These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Spectroscopic and functional determination of the interaction of Pb2+ with GATA proteins. Author: Ghering AB, Jenkins LM, Schenck BL, Deo S, Mayer RA, Pikaart MJ, Omichinski JG, Godwin HA. Journal: J Am Chem Soc; 2005 Mar 23; 127(11):3751-9. PubMed ID: 15771509. Abstract: GATA proteins are transcription factors that bind GATA DNA elements through Cys4 structural zinc-binding domains and play critical regulatory roles in neurological and urogenital development and the development of cardiac disease. To evaluate GATA proteins as potential targets for lead, spectroscopically monitored metal-binding titrations were used to measure the affinity of Pb2+ for the C-terminal zinc-binding domain from chicken GATA-1 (CF) and the double-finger domain from human GATA-1 (DF). Using this method, Pb2+ coordinating to CF and DF was directly observed through the appearance of intense bands in the near-ultraviolet region of the spectrum (250-380 nm). Absorption data collected from these experiments were best fit to a 1:1 Pb2+ -CF model and a 2:1 Pb2+ -DF model. Competition experiments using Zn2+ were used to determine the absolute affinities of Pb2+ for these proteins. These studies reveal that Pb2+ forms tight complexes with cysteine residues in the zinc-binding sites in GATA proteins, beta1Pb = 6.4 (+/- 2.0) x 10(9) M(-1) for CF and beta2 = 6.3 (+/- 6.3) x 10(19) M(-2) for Pb(2+)2-DF, and within an order of magnitude of the affinity of Zn2+ for these proteins. Furthermore, Pb2+ was able to displace bound Zn2+ from CF and DF. Upon addition of Pb2+, GATA shows a decreased ability to bind to DNA and subsequently activate transcription. Therefore, the DNA binding and transcriptional activity of GATA proteins are most likely to be targeted by Pb2+ in cells and tissues that sequester Pb2+ in vivo, which include the brain and the heart.[Abstract] [Full Text] [Related] [New Search]