These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Recombinant mouse ZP3 inhibits sperm binding and induces the acrosome reaction. Author: Beebe SJ, Leyton L, Burks D, Ishikawa M, Fuerst T, Dean J, Saling P. Journal: Dev Biol; 1992 May; 151(1):48-54. PubMed ID: 1577197. Abstract: Mammalian fertilization involves interactions of sperm surface receptors with ligands of the zona pellucida, an extracellular matrix surrounding the ovulated egg. In mouse, the zona is composed of three glycoproteins. One of them, ZP3, participates in primary sperm binding and in the subsequent triggering of the sperm's acrosome reaction. Considerable evidence suggests that carbohydrate determinants of ZP3 are responsible for binding to sperm and may be important for acrosomal exocytosis. A full-length cDNA encoding mouse ZP3 was assembled and cloned into expression vectors that contained either a cytomegalovirus (CMV) or a vaccinia (P11) promoter. Mouse L-929 cells were stably transformed with the pZP3-CMV constructs, and green monkey CV-1 cells were infected with a recombinant vaccinia virus containing ZP3. rZP3 was affinity purified from culture media and detected on Western blots as a single 60- to 70-kDa band, which differed in molecular weight from native ZP3 (mean, 83 kDa). Nevertheless, rZP3 is biologically active. rZP3 decreases sperm-zona binding with a potency equivalent to that of native zona pellucida and, like native ZP3, rZP3 triggers acrosomal exocytosis in capacitated mouse sperm. Thus, rZP3 isolated from both rodent and primate cells appears to contain those carbohydrate and protein structures necessary for ZP3's dual role in fertilization.[Abstract] [Full Text] [Related] [New Search]